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The fo rmat ion  of gas bubbles  in s u p e r s a t u r a t e d  fuel is cons ide red .  A fo rmula  is obtained for  
the c r i t i c a l  bubble r ad ius .  

We r e p o r t  the r e su l t s  of an inves t iga t ion  into the influence of var ious  m a t e r i a l s  on the na ture  of l i b -  
e ra t ion  of gas f rom a fuel.  We examine the condition under which bubbles  fo rm in the fuel and gas escapes  
not on ly  through the su r f ace  s epa ra t i ng  the fuel and gas l aye r  but also through the su r face  of the growing 
bubbles  as wel l .  

Super sa tu ra t ion  of a solution is eas i ly  e l imina ted  [1] by the int roduct ion of so l id  p a r t i c l e s  or gas bub-  
b l e s ,  or by contact  with rough s u r f a c e s .  

Dean [2] analyzing the data  of s e v e r a l  authors  on bubble fo rmat ion ,  and the r e su l t s  of his own e x p e r i -  
ments  on the s ta te  of gases  f rom wa te r ,  concluded that the p rob lem of l ibe ra t ion  of gas bubbles from a 
l iquid s u p e r s a t u r a t e d  by a gas is comple te ly  analogous to the p rob lem of bubble format ion  in a superhea ted  
fluid. He concluded that wa te r  s u p e r s a t u r a t e d  by gas wil l  not fo rm bubbles  p rov ided  there  a re  no gas bub-  
b les  at dust p a r t i c l e s  or  o ther  so l id  inclusions and the wa te r  is not sub jec ted  to mechanica l  shaking.  

G l a s e r  [3] found that a supe rhea t ed  fluid wil l  boil  under  r ad ioac t ive  i r r a d i a t i on .  An impor tan t  r e su l t  
was the detect ion of the rad ia t ion  sens i t i v i t y  of s u p e r s a t u r a t e d  solut ions of gases  in l iquids [4]. It was 
shown in [5] that  charged  p a r t i c l e s  in i t ia te  nucleat ion bubbles in a l iquid,  with s ize  reach ing  about 10 -G cm.  

As a ru le ,  fuel tanks contain a l a rge  number  of s t r u c t u r a l  m a t e r i a l s  with varying sur face  roughnesses .  
In this connection,  the in i t ia t ing e f fec t  was inves t iga ted  for  s e v e r a l  g rades  of rubbe r ,  and b ronze ,  b r a s s ,  
and s t a in l e s s  s t ee l  chips in vacuum evapora t ion  of fuel.  The t e s ted  rubbe r s  were  d i s t r i bu t ed  as follows in 
o r d e r  of i nc reas ing  in i t ia t ing capabi l i ty :  type 203B sheet  rubbe r ,  3826 sheet  rubber ,  and vacuum rubber .  
Bubble fo rmat ion  began at an absolute  p r e s s u r e  of 0.6-0.7 k g / c m  2. In a pure  g lass  ve s s e l ,  no l ibe ra t ion  of 
a i r  bubbles  was o b s e r v e d  even at 0.01 k g / c m  2. Severe  shaking did not r e su l t  in bubble format ion .  

An expe r imen ta l  inves t iga t ion  was also made of the ini t ia t ing effect  of model  panels  of aluminum a l -  
loys and s t a in l e s s  s tee l  with spo t -we lded  angle p i eces .  The r e l e a s e  of gas in the form of bubbles was ob-  
s e r v e d  to begin at 0.55 k g / c m  2 nea r  the joints  and at the spot welds .  No l ibe ra t ion  was obse rved  f rom the 
r ema in ing  s u r f a c e s  up to a p r e s s u r e  of 0.05 k g / c m  2. At 0.15 k g / c m  2, bubbles were  l i b e r a t e d  for  4 h; af ter  
this t ime ,  the gas content was cut by half .  Bubble fo rmat ion  was obse rved  at the same  points on the s u r -  
f aces .  The number  of fo rmat ion  cen te r s  depended on the roughness  of the m a t e r i a l s  and the p r e s e n c e  of 
c r a c k s .  In a r epea t ed  tes t  of m a t e r i a l s  held for a ce r t a in  t ime in p a r t i a l l y  degassed  fuel,  the ini t ia t ing e f -  
fect  was found to be weake r ,  and s o m e t i m e s  en t i r e ly  absent .  After  a i r  drying,  the m a t e r i a l s  r ega ined  thei r  
abi l i ty  to in i t ia te  the evolution of gas .  

These  data indicate  that the bas i c  f ac to r  r e s p o n s i b l e  for  the r e l e a s e  of a i r  bubbles  f rom the fuel is 
the p r e s e n c e  of nucleat ion bubbles  of a i r  in dense ,  m i c r o c r a e k s ,  and pores  of the inves t iga ted  m a t e r i a l .  It 
should be noted that the in i t ia t ing effect of m a t e r i a l s  is unstable ,  s ince  a i r  bubbles remain ing  on the su r face  
of m a t e r i a l s  in contact  with the fuel may change in s ize  owing to diffusion exchange with the fuel.  The fo l -  
lowing p r o c e s s e s  we re  obse rved  in the exper imen t .  If vacuum evapora t ion  was c a r r i e d  out immed ia t e ly  
af te r  the rubbe r  spec imen  was dropped into the fuel,  evolution of gas in the form of bubbles was obse rved  
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Fig. 1. Fo rms  of bubble nuclei: a) at wetted wall; 
b) at unwetted wall. 

at 0.45 kg /cm 2. When the rubber was f i rs t  held in fuel for 30 min at a tmospher ic  p r e s s u r e ,  evolution was 
observed at 0.12 k g / c m  2. 

In vacuum-evapora t ion  of fuel in the presence  of a steel angle piece covered with a layer  of rust ,  the 
rate of evolution dropped sharply,  depending on the holding time before commencement  of vacuum t rea t -  
ment. This indicates that owing to the good wettability of the test mater ia ls  by T-6 fuel and to fuel surface 
tension, even at a tmospher ic  p r e s s u r e  there is dissolution of air bubbles remaining on the surface after 
immers ion  of the specimen in fuel sa turated with air at this same p res su re .  

In all bubbles having a convex surface ,  the gas p r e s su re  is g rea te r  than Pbar  by an amount 2l  = 2(~/r. 
Thus if the fuel is sa tura ted  with air  at Pbar ,  the bubbles may dissolve in time. Let us look at the condi- 
tion for dissolution of bubbles that can se rve  as initiators of separat ion of gas f rom the fuel in vacuum- 
evaporation of the fuel sa turated with air  at Pbar  after it has been poured into the tank and s tored at a tmo-  
spher ic  p r e s s u r e .  The gas p r e s s u r e  in a spherical  bubble is 

Pg = Pbar 4- YI h q- -2~--~--Ps. (1) 
r 

The equilibrium p re s su re  of gas over  a concave bubble surface  is tess than the equilibrium pressu re  
over the flat surface ,  Pi ,  and in accordance with the Kelvin law is 

' 1 +  1)  yg 
Yz- g (2) 

For  fuel sa turated at the part ial  gas p r e s su re  Pbar ,  the condition for dissolution of a spherical  gas 
bubble is represented  by the inequality 

Pg > Pbar - -  2~ yg___ (3) 
r Y1 - -  Yg 

Substituting Pg into this expression,  we obtain 

P~<  2 ~  (1 Yg ) + y / h ,  (4) 
r Yl - -  Vg 

which is the condition of bubble annihilation for the above conditions. Bubble dissolution takes place by dif-  
fusion owing to the difference in gas concentration in the fuel and the equilibrium concentration co r respond-  
ing to the gas p r e s su re  in the bubble. 

When vessels  are filled, mic roe raeks ,  sc ra tches ,  and mic ro i r r egu la r i t i e s  tn metal walls,  rubber  
pores ,  synthetic mate r ia l s ,  g lass ,  etc.,  may remain unfilled with liquid. The air or other gas remaining 
wilI initiate re lease  of gas tn the form of bubbles at the vessel  walls when a par t icu lar  radius is reached;  
it depends on the shape and size of the defect f rom which the bubbIes grow, the propert ies  of the gas and 
liquid, and the p re s su re .  
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Suspended part icles  ca r ry ing  bubble nuclei also facili tate the re lease  of gas as bubbles. 

Depending on wettability, the nucleation bubbles at the walls will be concave or  convex. Figure  1 
shows the possible types of nucleus. 

Let us look at the condition for  bubble equilibrium in the liquid, and the expression for the cri t ical  
radius of a bubble located at a wettable surface.  

The equilibrium equation can be written as 

Ps + Pib = P~ ~- yl.h + ,~ 4- . (5) 

After substitution of Pib and Pi,  found f rom the Henry law, the equilibrium condition (5) for a bubble 
of gas in a liquid with a gas concentrat ion A i in the liquid takes the form 

P. q- A-A-~ = P~ + ylh + ~ 1+ , (6) 
kt~ . .. Yz - -  Ygi! 

while when there are  k gases dissolved in the liquid, 

k 
A~ = p ~ + y l h + g  _§ 

P~ + kt ~ 
; - - r  

k 

YI -- YgU 

k 

The term ~ " /g i / (7 l -Tg i )  can usually be neglected, since it is ordinari ly small  as compared with unity. 

Using the expression obtained, it is easy to determine the cr i t ical  radius of a nucleus for the known 
gas concentrat ions in liquids or ,  converse ly ,  the cr i t ical  concentrat ions when the nucleus dimensions are 
known. 

(7) 

For  example, for a nucleus with spherical  surface  convex toward the liquid, 

2~ (8) 
fCr ~ k 

i=1 ~ + P s - - P ~ - - Y t h  

Bubbles with radii less than the cr i t ical  value will dissolve,  while those with grea te r  than cri t ical  
radius will grow. Only bubbles with radius equaling r c r  will be in unstable equilibrium. In approximation, 
our example ref lects  the case in which the nuclei are located at a wettable surface.  

If the surface cannot be wetted by the liquid, the bubble equilibrium condition takes the form 

k 
A~ = p~ ~_ tz 2c~ (9) 

~=l 

while the bubble growth condition is 

If 

k 

P s +  A ~ > p ~ @  YL h _ -  
f=l kt* /rl 

k 
P " + E  Ai / 

the bubbles can grow to a cer ta in  size,  whereupon growth ceases .  
dition for stable re lease  of gas as bubbles will be 

k 

(10) 

For  unwettabte walls,  therefore ,  the con-  

(11) 
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Thus for  E A i /k t i  = 0 we obtain the conditions for  boi l ing of l iquids containing no d i s so lved  gas .  
f = l  

The fo rmula  obtained for  the c r i t i c a l  bubble radius  can be used to evaluate  the influence of changes 

in the condit ions on sepa ra t ion  of ga se s .  

As an example ,  let us look at the r e su l t s  of an expe r imen t  with T-6  fuel,  s a tu r a t ed  with ni t rogen at 
3 k g / e m  2. 

In these e x p e r i m e n t s ,  we found far  more  cen te r s  of s epa ra t i on  than in vacuum evapora t ion  of the 
fuel.  The cause  becomes  obvious when we use the p roposed  c r i t i c a l - r a d i u s  fo rmula .  F o r  a fuel s a tu ra t ed  
at 3 k g / e m  2, as the p r e s s u r e  drops to 1 k g / e m  2, the c r i t i c a l  rad ius  becomes  roughly half  that for  vacuum 
evapora t ion  of o rd ina ry  fuel s a t u r a t e d  at 1 k g / c m  2, down to an absolute  p r e s s u r e  of 0.05 k g / c m  2. Thus in 
the f i r s t  ease  more  sma l l  bubbles  a r e  capable  of growing owing to the diffusion of d i s so lved  gas in them. 

There  a re  con t rad ic to ry  opinions as to the influence of mixing on s epa ra t i on  of a d i s so lved  gas from 
a l iquid.  Some authors  [2] s ta te  that vor t i ces  form during mixing,  and tens i le  forces  appear  at the cen te r  
of the v o r t i c e s ,  r e su l t ing  in s epa ra t i on  of the l iquid and fo rmat ion  of a nucleus ,  which can continue to grow 
if the solut ion is s u p e r s a t u r a t e d .  

In our opinion, some of the vo r t i ce s  must  genera te  nuclei  whose r ad i i  exceed the c r i t i c a l  value for  the 
given condi t ions ,  if mixing or  agi ta t ion of l iquid flowing through pipes is to lead to s epa ra t i on  of gas as bub-  
b les .  If a vor tex  gene ra t e s  nucle i  with r ad i i  below the c r i t i c a l  value,  they wilt  d i s so lve .  In gene ra l ,  some 
of the nuclei  with the b e l o w - c r i t i c a l  r ad i i  can combine if they en te r  the zone of a new vor tex  and, merg ing ,  
exceed the c r i t i c a l  r ad ius .  In addit ion,  vor tex  fo rmat ion  can lead to local  p r e s s u r e  drops  n e a r  nuclei  ex -  
i s t ing at wai l s  and p a r t i c l e s ,  where  the r ad i i  a r e  below the c r i t i c a l  value for the ave rage  flow condit ions.  
At the p r e s s u r e  p reva i l i ng  in the vor tex  zone, the rad ius  may prove  above the c r i t i c a l  value,  and the nuclei  
wil l  begin to i n c r e a s e  in s i ze ,  continuing to do so as long as the vor tex  ex i s t s .  As a r e s u l t ,  the radius  of 
the nucleus may exceed the c r i t i c a l  value for  the ave rage  flow condi t ions ,  and the bubble wil l  in i t ia te  s e p a -  
ra t ion  of gas f rom the flow. 

TI,  "/g 
(7" 

r ,  r l ,  r 2 
Ai 
Ati 
P b a r  

Pbub 
Ps 
Pg 

P l  

Pi  

Pib 
P~ 

N O T A T I O N  

are  the spec i f i c  g rav i ty  of l iquid and gas;  
is the su r face  tension of the liquid; 
a re  the r ad i i  of cu rva tu re  of the su r face ;  
is the concent ra t ion  of gas in liquid; 
Is the gas solubi l i ty  coeff icient ;  
*s the b a r o m e t r i c  p r e s s u r e ;  
is the p r e s s u r e  within the bubble; 
ts the s a t u r a t e d  vapor  p r e s s u r e ;  
is the p r e s s u r e  of the gas within the bubble; 
is the p r e s s u r e  within the l iquid su r rounding  the bubble; 
is the pa r t i a l  p r e s s u r e  of the gas that co r r e sponds  to equi l ib r ium between l iquid and gas for a 
plane phase  in te r face ;  
is the equ i l ib r ium p r e s s u r e  of the gas in the bubble;  
is the p r e s s u r e  above the su r face  of the liquid. 

I. 

2. 
3. 
4. 
5. 
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